INTRODUCTION
This technical report is the seventh, in a series of reports that introduce and explain structures and processes used for the Inquiry Synthesis Project, which is addressing the research question: What is the impact of inquiry science instruction on student outcomes? Technical Report 1: Generating the Synthesis Sample of Studies describes Phase I of the project (Report Collection) and the criteria used for conducting the search for research reports to include in the synthesis. Phase II of the project is the Coding Process, which has three stages:

1. Inclusion/exclusion coding—Technical Report 3: Operationalizing the Inclusion/Exclusion Coding Process

There are two other technical reports in this series. Technical Report 2 discusses the structure for describing inquiry science instruction used in this synthesis and Technical Report 4 describes the issues associated with the unit of analysis for the synthesis. This report provides the bibliographic information for the studies that met the final inclusion criteria, were analyzed, and reported in JRST.

FINAL INCLUSION CRITERIA
- Had sufficient information to clearly determine the presence or absence of inquiry-based science instruction, as operationally defined for this project (see Technical Report 5 for elaboration)
- Had student understanding or retention of science facts, concepts, or principles and theories in physical science, life science, or earth/space science as a dependent variable for the study
- Had explicit instruction in either physical, life, or earth/space science
- Had one instructional treatment that could be distinguished from others as exhibiting more inquiry-based instruction based on our coding protocols (i.e., a treatment of interest)
- Were not conducted in museum contexts
- Were not case studies of individual students

REFERENCES OF INCLUDED INQUIRY SYNTHESIS STUDIES
These are the references for the 138 studies in the synthesis. Numbers that precede some references indicate that these reports were coded in conjunction with others with the same numbers because they reported on results from the same studies. All unnumbered references represent one study.

Chinn, C., & Malhotra, B. (2002). Children's responses to anomalous scientific data: How is conceptual change impeded? *Journal of Educational Psychology, 94*, 327-343. (This article contained two different studies)

Hoffman, J., & Krajcik, J. (1999, March). Assessing the nature of learners' science content understandings as a result of utilizing on-line resources. Paper presented at the meeting of the National Association for Research in Science Teaching, Boston, MA.

Copyright © 2009 Education Development Center, Inc.

(10) Nakhleh, M., & Kraicik, J. (1991, April). The use of videotape to analyze the correspondence between the verbal commentary of students and their actions when using different levels of instrumentation during laboratory activities. Paper presented at the annual meeting of the National Association for Research in Science Teaching, Lake Geneva, WI.

Peasley, K. (1992). Why did we do all this writing and talking if you already knew the answer? The role of the learning community in constructing understanding in an elementary science class. (Elementary Subjects Center, Series No. 61). East Lansing, MI: Michigan State University, Center for the Learning and Teaching of Elementary Subjects.

Copyright © 2009 Education Development Center, Inc.
Smith, C., Snir, J., & Grosslight, L. (1992). Using conceptual models to facilitate conceptual change: The case of weight-density differentiation. Cognition and Instruction, 9, 221-283. (This article contained two different studies)

ADDITIONAL INFORMATION

For more information on this or other CSE research projects or to view additional technical reports, visit http://cse.edc.org/work/research/

Inquiry Project Staff

Daphne D. Minner, Ph.D., Principal Investigator (dminner@edc.org)
Abigail Jurist Levy, Ph.D., co-Principal Investigator
Jeanne Rose Century, Ed.D., co-Principal Investigator (August 2001-July 2005)
Erica S. Jablonski and Erica T. Fields, Research Associates